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A finite-difference method for solving three-dimensional, time-dependent incom-
pressible Navier—Stokes equations in spherical polar coordinates is presented in
detail. A new algorithm, which is second-order accurate in time and space, is con-
sidered, and decoupling between the velocity and the pressure is achieved by this
algorithm. Further, the numerical method is tested by computing the spherical Cou-
ette flow between two concentric spheres with the inner one rotating. A comparison
of the numerical solutions with available numerical results and experimental mea-
surements is made. It is demonstrated that the numerical code is valid for solving
three-dimensional, unsteady incompressible Navier—Stokes equations in spherical
polar coordinates. © 1998 Academic Press
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1. INTRODUCTION

The numerical solution of the unsteady incompressible Navier—Stokes equations rec
discretization in both space and time, and the discretized equations for the velocity ar
pressure are a coupled system with the incompressibility condition. As these prim
variables are coupled and together they form a large system, it is very expensive to cor
it directly. The coupling between the velocity and the pressure by the incompressit
constraint is one of the main concerns in designing an efficient and accurate time integt
algorithm for this system.
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The split step (time splitting) method may be used as an approximation approach in wt
the solution of an evolution equation is advanced in time by solving a set of simple pre
lems, each of which gives a different aspect of the physics. For solving the incompress
time-dependent Navier—Stokes equations, the pressure splitting algorithm, which was
introduced by Chorin [1], treats the pressure term and other terms separately and sec
tially. Many authors developed Chorin’s idea, and several versions of his algorithm h:
been proposed since then, e.g., the fractional step method (Kim and Moin [2]), the pres
correction method (Van Kan [3]), the projection method (Bell, Colella, and Glaz [4]; Gresl|
[5]). The essence of the aforementioned methods is to compute an intermediate vector
as afirst step by ignoring the incompressibility constraint and then projecting the vector fi
onto a divergence-free field in a second step to obtain the velocity field. This decoupling f
cess leads to several smaller decoupled systems for velocity components and the pre:
respectively, so the computational cost of calculations of the incompressible time-depen
Navier—Stokes equations can be significantly reduced in the velocity-pressure formulat
However, the above methods have two fundamental problems, i.e., subtle boundary cc
tions for the intermediate velocity and the pressure, and low accuracy in time integrati
Fortunately, these defects were remedied recently by Dukowicz and Dvinsky [6], and P
[7, 8]. They considered the full discretized equations in which the boundary conditions |
already been applied, and therefore, no ad-hoc boundary conditions of the intermec
primitive variables were required. They also analyzed the full discretized equations w
an approximate factorization method (Dukowicz and Dvinsky [6]) and a block LU decor
position method (Perot [7]), respectively, and showed the possible second or even hi
order time accuracy.

Based on Dukowicz and Dvinsky’s [6] approximate factorization method, a new alg
rithm, which is second-order accurate in time and space, will be given in this paper. Recel
some three-dimensional numerical work on the spherical Couette flow was done witha s
tral method [9, 10], but there is still no literature on this work done with a finite-differenc
method. Here, we present a finite-difference scheme for solving the three-dimensiona
compressible time-dependent Navier—Stokes equations in spherical polar coordinate
this numerical study, the singularities of the Navier—Stokes equations in spherical pt
coordinates are removed by performing spatial discretization in a semi-conservative f
with the equations on a staggered grid. The spherical Couette flow between two concel
spheres is then computed with this finite-difference numerical method, and its feasibi
for computing flow dynamics in spherical polar coordinates will be verified. In Sectic
2, the governing equations and boundary conditions are presented. The numerical me
is described in detail in Section 3. In Section 4, we show some numerical results of
spherical Couette flow and a comparison with available numerical results and experime
measurements. A summary is given in Section 5.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The full incompressible Navier—Stokes equations with no body force and the contint
equation are

au 1
— 4+Uu-Vu=-Vp+ —Va, 2.1
ot + P+ Re (1)

V.u=0, (2.2)
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FIG. 1.

Spherical Couette flow geometry.

number.
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respectively, where is the velocity field, p is the kinematic pressure, and Re is the Reyno

The above equations are now rewritten in a spherical polar coordina®@spjr(see
Fig. 1) as

Uy 1 UpUs  UgpUg
— ——ru ——smeuu - -
8t+ [r2(urun] + 089[ (Upur)] + |n98¢[¢r] r .
ap 1 (19 /,0u 1 98/ . au 1 3%u 2u
rc— ———— | sing— — — —
rt Re{ r2 ar< ar > * Zsin 9 < 89) * 2sie a2 12
2 9(sin@ 2 9
__2 dEinfw) 2 O 2.3)
r2sing 96 r2sing d¢
aly 1 UpUpy Ul
— 4+ = —[r°(u —[siné(u -
at r28 [ " 9)]+r sind 89[ (Usto)] + rsing 8¢>[ o] rtano r
19p 1 (19 [,3u 1 9 (. 3y 1 9%y
=——— 4+ < —(r= ———— | sing— —_—
r89+Re{r28r( ar)+r2sm9 ae( 89>+r25in29 32
2 du u 2cos9 au,
S - e mer o) (2.4)
296  r2sirf6 r2sirfd d¢
3U¢ 1 a 2 Uq)Ur Uy Uy
— 4+ = —[r*(u sinfd(ugu u
ot Tzgrll ]+ 939[ W)l + 5 a¢[ oUs] + * rtane
1 9p 1 (18 /[,0us 1 9/ . du 1 9%u,
S re—= — — [ sing— —
rsing d¢ " Re {r2 ar< ar )t 2sing 96 20 ) T Zsita A2
2 00U 2cosd Iy Uy }
Ty e 25
r2sing d¢ = r2sirfd 3¢  r2sinfo 29)

ad 1 9du
r’u —(sin i J | 2.6
r28r( U + rsing 89( 9)+rsm0 ¢ (2.6)
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outer sphere H inner sphere
(stationary) : (rotatory)

FIG. 2. Spherical polar coordinatés 6, ¢) and the velocity components;, u,, uy,).

where y, ug, and y, are the velocity components in the radial direction, in the meridioné
direction, and in the circumferential direction, respectively. It can be seen that these e
tions are represented in a semi-conservative form.

We consider the time-dependent motion of an isothermal, incompressible, Newtor
fluid contained in an annulus between two concentric spheres (see Fig. 2). The sphere
assumed to be rigid and the cavity region between the spheres is filled with a viscous fl
The inner sphere is constrained to rotate about the vertical axis with a prescribed ang
velocity €2, while the outer sphere is fixed. The inner and outer radii of the spheres «
R: and R, respectively. The Reynolds number is defined as-R¥R;2/v, wherev is the
kinematic viscosity.

No-slip (rigid) boundary conditions on the spherical boundaries are

U =uU =0,u, =sind onr= Ry/R; =1,

(2.7)
Uh=U =Uy =0 onr= Ry/R;.

3. NUMERICAL METHOD

3.1. Temporal and Spatial Discretization in Spherical Polar Coordinates

For brevity, we explain our discretization method with Egs. (2.1) and (2.2), instead
the actual equations (2.3)—(2.6). Temporal and spatial discretization of Eqgs. (2.1), (.
produces discretized equations in the form

At
u™t —u" 4 7[3Hun — Hu"™

= —%[3Gp"+1 —Gp" + ZiRte[Lu "1 4 Lu" + At(mbo), (3.1a)
Du™?! = 0+ (cbo), (3.1b)

wherelL is the spatially discrete Laplacian viscous term (conservative part) operhtor,
is the spatially discrete convective term plus the remaining viscous term (nonconserve
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FIG. 3. Schematic computational mesh in a meridional cross section of the three-dimensional spherical <

part) operator( is the spatially discrete gradient operator, and D is the spatially discr
divergence operatoat is the time increment and the superscript n means the nth time si
Space discretization is carried out in a computational domain between the two conce
spheres (see Fig. 3 for reference), and the unknown discrete varnigbleand 3+ refer

to the nodes in the interior, not to the boundary nodes. Here, the spatial discrete opel
L, H, G, and D are evaluated using the central finite-difference scheme on a staggerec
and are second-order accurate in space. The staggered grid system used in this stu
be shown concretely in Section 3.3 and Section 3.4. For the time-integration, we have
a semi-implicit time-advancement scheme with the implicit Crank—Nicolson scheme
the conservative part of the viscous term and the explicit Adams—Bashforth scheme fc
convective and the remained viscous terms. The pressure term is treated in a mixed
of the Crank—Nicolson and Adams—Bashforth scheme. It is also noted that the boun
conditions for the momentum equatiomlfc) and continuity equation (cbc) have beer
already incorporated in the discretized equations (3.1a), (3.1b). In the present case stu
there are clearly the periodic, homogeneous no-slip boundary conditions for the velo
the boundary condition matricembc) and (cbc) are identically zero (Perot [7]) and will
not appear in the following section.

3.2. Approach to the Discretized Equations (3.1a), (3.1b) with a Second-Order
Approximate Factorization Method

We can easily rewrite the discretized equations (3.1a) and (3.1b) in matrix form:

| — sl SG || umt—un AL un —3(3Hu" — Hu"™)
At 1| T 1 n| T A '
SD 0 ||3pt+p —-3D 0]|p 0

(3.2a)



52 SHA, NAKABAYASHI, AND UEDA

Inamanner similarto Dukowicz and Dvinsky [6], Eq. (3.2a) can be approximately factoriz
as

l— 2L 0 I 2G| [ umt—un
0 1||5D 0 ||3p"+p"
1 G un 1 n_ n-1
= at| R + at| T2GHW —HUTD (3.2b)
—3D 0] |p 0
By expanding the Eq. (3.2b), we can find that it is just equivalent to
At At
un+1 _ un + ?[3Hun _ Hun—1] — _?[3Gpn+1 _ Gpﬂ]
At At?
—[Lu™ 4 Lu" + ——LG[3Gp™* + GpT, 3.2
+ opaltu™! + Lu"l 4 2= LG[3GP™! + Gl (3.2¢)
Du™?! = 0. (3.2d)

Equations (3.2c¢), (3.2d) differ from Egs. (3.1a), (3.1b) by a single additional term on t
right side. It can be observed that this additional term &), and it is demonstrated
that the order of the temporal accuracy is preserved. So the discretization of the methc
second-order accurate in time and space.

Equation (3.2b) is exactly equivalent to the following split equations in which two ne
intermediate velocities, U are included:

At
a=u"+ 7Gp”, (3.2¢
At At At
| ——L)o=(l+—L)0— =[8Hu" —Hu"™? 3.2f
( 2Re>u (+2Re>u o [3HUT — HU™T, (3.2
3At
utl =0 — _Gpn+l, (3'29)
Dun+l = 0, (32h)

Wherel is the identity matrix. There are no boundary conditions required for the inte
mediate velocities as the boundary conditions have already been applied at the leve
Egs. (3.1a), (3.1b).

Taking the divergence of Eqg. (3.2g) and using the incompressibility condition, Eq. (3.2
we can obtain the following discrete Poisson equation for the pressure:

2D0
§Kl: — DGp™! = Lp™L. (3.2i)

3.3. Method for Solving the Discrete Velocity Equation (3.2f)

The approximate factorization technique (Beam and Warming [11]; Briley and McDone
[12]; Kim and Moin [2]) is used to treat the discrete velocity equation (3.2f). With th
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definition of

At L+l
2Re 0T

in which L;, Ly, and Ly are the r9, and¢ components oiAt/(2Re)L, respectively, we
rewrite Eq. (3.2f) as
N , -, At n n-1
(I —Li—Lo—Lg)(—0)=2(Lr+ Ly + Lg)a — 7(3Hu —Hu"). (3.3a)
Equation (3.3a) can be factorized as

(=L —Lg)( — Lg)(@ —0) = 2(L, + Ly + Ly — %(3Hu“ — Hu"™Y). (3.3b)

It is easy to show that the above approximation of Eq. (3.3a) is of ordati®

As the discrete operators,ILy, Ly, andH act on a staggered grid (see Fig. 4), thi
treatment of the singularities in the original equations is then simplified. Furtia¥),
Lo (0-0), and L, (U-U) can be expressed with the replacemenuef)= (ui, up, uz) as

_At 1 1
~2Rer?(iyr(i+3) —r(i+3)

x [rz<i+§>w_rz(i+})w]’

L uy

2) ri+1) —r(@) 2) ri)—ri-1
Lot 1t 1
71T 2Rer2(i) sing (k — 1) A6
x [sine(k) nk i)e_ B _ singk — 12X _Au;(k — 1)} :
L At1 1 u1<j+1>—2u1<j>+u1<j—1)}
P 2Rer2(i) si? 6 (k — 3) (Ag)?

in the radial direction,

Ly At 1 1
"2 Rer?(i + ) 1) — 16— 1)
« v l{z(i ;L - .Uz(ii 2 (i 3 }) l.Jz(i)l— U(i - 11 ’
r(i+3) —r(i+3) 2)r(i+3)—r(i-3)
LA 111
727 2Rer2(i+ 1) sing(k) A6
y {sin@ (k N %) Uo(K + 2)9— k) sing (k B %) uz(K) —AU;(k - 1)} 7
LAt 1 1 [Uz(j+1)—2U2(j)+U2(j_1)]
P72 7 2Rer2(i+ 1) sif o (k) (Ag)?
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(a) (b)

Us (j, k-1)

U (i, kt1)
’ i+1/2

. i1/

-1/2 U:"(’J.lﬁﬂ)

i-1/2

(c) ()

FIG. 4. Staggered grid system used for the velocities: (a) for computing the radial velocity on meridior
plane(r, 6); (b) for the same as (a) but on circumferential plene); (c) for computing the meridional velocity on
meridional plan€r, 6); (d) for the same as (c) but on plat& ¢); (e) for computing the circumferential velocity
on circumferential planér, ¢); (f) for the same as (e) but on platg ¢).

in the meridional direction, and

Liuz = ﬂ ! !
™7 2Rer2(i+ L)1) —r(i — 1)
Ui+ 1) — us(i) 5 . us(i) — Us(i — 1)
x | r2@i)— . —ri—-1)— . ]
{ r(i+3) —r(i+3) r(i+3)—r(i—3)
Lot — At 1 1 1

2Rer2(i 4 1) sing (k — 1) A0

x [Siné)(k) okt 2)9_ 18 singk — 12X _A”;(k - 1)} ,
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FIG. 4—Continued

L ote— At 1 1 Ua(j +1) — 2W()) + Ux(j — 1)
P 7 2Rer?(i + 1) sirfo (k- 1) (Ag)?

in the circumferential direction, whered andA ¢ are uniform increments in the meridional
direction and in the circumferential direction, respectively. We compute the discrete velo
of Eq. (3.3b) by solving three tridiagonal matrices with a standard TDMA (tridiagon:
matrix algorithm) method.

3.4. Method for Solving the Discrete Poisson Equation (3.2i)

We multiply the discrete Poisson equation (3.2i) by (réfti, k), and then represent it
definitely on a MAC staggered grid (Harlow and Welch [13]; see Fig. 5) as

sir? 6 (k) [ﬁ<+}>WHG+LLb—WH¢Lb
rli+3) —r(i-1) 2 ri+ 1) —r(i
r2 | 1 pn+l(ivjvk)_pn+l(i _1’j’k)
- ( _§> r@)—r(i—1 }
. n+ic N
sme(k)[sme<k+%>p (), k+1) —p"(.j. k)

ABO

LG K) — oML Kk —
—sind (k_ }>p (i, ), K) —p"(, ), k 1)]
2 A6

+ pn+1(i1j + 1’ k) - 2p|’1+1(i’ js k) + pn+1(i»j - 1! k)
Ap?

_2 5 DU
= 3(rsing)=(i. k) —. (3.4a)

Rearranging the Eq. (3.4a) gives
SGi, PG, §, k) = Aga, 0P+ 10, K) + Al kp™H - 10, K)
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i-1/2 i+1/2

(a) (b)

k-1/2

PGk

. b k+1/2
PG, kD)

VT an

(c)

FIG.5. Staggered grid system used for the pressure: (a) for computing the pressure on meridiorial@lane
(b) for the same as (a) but on circumferential pléan@); (c) for the same as (a) but on pla(g ¢).

+B{p" G, j + 1, k) + p™i, j — 1, k)

+Ca P, j, k+ 1) + Ca(kp™ii,j, k — 1)

— g(rsine)z(i, k)Du. (3.4b)
Here,
. . . At
S(, k) = AL, K) +A_1(i, k) + 2B+ C+1(k) +C_1(k), B= (Td))z’
2/ 1 .
Ay(i k) = At r2(i + 3) si? 6 (k)

ri+3)—r(i—-3)]ri+1-rodl
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r2(i — 3) sirf 6(k)
+4) —r(i =i —ri -]

A_1(i, k) = At o

1 t 1
Ck) = (A9)2 sinfd (k) siné (k + ) Ci1(k) = (AG)Z sind (k) sin@ (k - E)

ri+3z)—r(i-3)

sind (k + 3) U (k+ 3) = sind (k= 3)% (k - 3) }
A0

28 1(i 1\ _re21(; 1
(rsind)2(i, kD = (sinze)(k){[r Ul (i + 3) — [r2u] (i 2)}

+ r(i)(sine)(k){

SESIECUES NS

-|-r(i)sin9(k){ Ad

The discretized equations, (3.4a) and (3.4b), are the ones for the grids not adjacent
boundaries. For the grids adjacent to the boundaries, these equations are modified
velocity boundary conditions are incorporated. For example, for the grids adjacer
the boundaries in radial and meridional directions=(i2, k = 2), we have the follow-
ing equation from (3.4a):

st@(z) I:r2(§> pn+l(3) _ pn+l(2) B r2 (§> (Apn+1> (2):|
r(3)-r(3) L \2 rd —rQ) 2 Ar
sing2) [ . /5\p™@) —p™@2 . [/3\/Ap™?
+ D [sm@ (§> D — sme(é) ( D )(2)]

PG+ -2+ -y 2, DU 2,))
Ag? = é(rsme) (2, Z)T. (3.4c)

+

Next, we consider the discrete equation (3.2g) with the velocity conditions at the bot
aries, e.g.,

Apn+1 21 N
( Ar (2) - _:_%E(up-H - Ur) |Wa|| =0

in radial direction and

Apn+1 2r(@) .
( AO (2) = _EE(UQZHL]- - UQ) |Wa|| =0

in meridional direction.
These relations are the Neumann boundary conditions and are consistent with the spe
components of the boundary velocity in the radial and meridional directions. It can be ¢
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from the abovementioned treatment that the boundary value of the discrete pressu
unnecessary in these coordinates. Now, we substitute these relations into Eq. (3.4c¢) an

A_1(2,k)=0, C1(2)=0
subsequently. It is also true for
ANk =1,k =0, C.a(Ny—-1) =0

in which N, and N, are the grid numbers in the radial and meridional directions. The:
result in two tridiagonal matrices in the radial and meridional directions. For the circumfi
ential direction, it can be seen from the discrete equation, (3.4b), that a cyclic tridiago
matrix is formed as periodicity of the pressure is imposed. So, we can compute the disc
pressure, first, by application of ADI (alternating-direction implicit) method (Peaceman a
Rachford [14]) to the discrete pressure equation (3.4b), and then solving the system wi
standard TDMA method for the two tridiagonal matrices and with a refined TDMA methc
(Temperton [15]) for the cyclic tridiagonal matrix.

3.5. Overall Numerical Computation Procedure

The overall numerical computation procedure to solve the time-dependentincompress
Navier—Stokes equations is as follows:

1. Solve the intermediate velocityffom Eq. (3.2e);

2. Solve the intermediate velocityfrom Eg. (3.2f);

3. Solve the pressurdp' from Eq. (3.2i) with the divergence-free velocity equation
(3.2h) satisfied;

4. Solve the velocity™?! from Eqg. (3.2g), and then finish one time step calculation.

To complete the numerical method, adequate initial conditions of the veldtitgd the
pressure gradiei@p® are required. In the present study, we chose the Stokes solution as
initial velocity condition at Re= 5, i.e.,u’ = u°(0, 0, §) in which the Stokes flow profile
is

1 1+ 8%\ .

where the clearance ratpis defined ag = (R, — R;1)/R;. This Stokes flow is the time-
independent, axisymmetric solution to Egs. (2.3)—(2.6) and the boundary condition (2.7
the limit Re— 0. For the initial pressure gradient it can be found @pf = 0 is exactly
satisfied in this Stokes solution of the spherical Couette flow. When considering a steady,
Reynolds number flow as the initial state, we generally have the relaf8n= v2u°/Re

for the initial pressure condition.

In the following calculation, the computational domain is divided by a number of gric
22 % 361« 91 in the radial, meridional, and circumferential directions, respectively. Tt
grids were constructed uniformly in the meridional and circumferential directions, while
geometric distribution was used in the radial direction in order to improve the resolution
the near-wall region of the spheres. The computational mesh in a meridional plane of
three-dimensional spherical shell is schematically shown in Fig. 3.
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Since the viscous stability limit is removed by treating the conservative part of the visc
terms implicitly, the stability of the overall numerical method is restricted by the CI
condition. The local CFL number is defined as

u u u
crL= (Ml MWl Wl )
Ar  rAf rsinfA¢

whereAr, rA6, and r sird A¢ are the grid spacing of the spherical polar coordinates. T
time incrementAt is then required for the restricted stability condition of ffakL} <1,
where maxCFL} is the maximum value of CFL number evaluated in the computatior
domain. However, the condition of mg&FL} <1 here is only a guess, but not a knowr
stability limit.

In the next section, we present the direct numerical simulation results in the ¢ése of
0.14. For comparisop has been chosen the same as that in the experiments (Nakabay
[16], Nakabayashi and Tsuchida [17]). The Reynolds number was quasi-statically incre
(dR*/dt = 0.0006 R* is defined as R=Re/Rec in which Rec is the critical Reynolds
number for occurrence of the Taylore@léer(TG) vortex) in order to eliminate the effect
of the rotative acceleration ratio on the spherical Couette flow (Nakabayashi and Tsuc
[18]). Time integration was carried out until the steady or time-periodic state was obtail

4. NUMERICAL RESULTS

4.1. Axisymmetric 0-Vortex Flow, 0-Vortex Flow with Pinch and 1-Vortex Flow

As the Reynolds number is increased from the initial value£RBeD) but still sufficiently
low, we obtained numerical solutions which have been referred to as the 0-vortex |
(Marcus and Tuckerman [19]). The laminar subcritical regime of the spherical Cou
flow is the combination of a primary azimuthal motion (axisymmetric) and a large-sc
meridional circulation present on either side of the equator. Figures 6(a) and (b) shc
typical numerical solution of the 0-vortex flow in meridional plane in the case ef B@0:
(a) for the meridional streamline; (b) for azimuthal angular velocity. In the figures t
intervals of the tick marks on the outer sphere denote the circumferential distaf\CElas
tick marks along the inner sphere are spaced at intervalgX8 radians. For clarity, the gap
width of the two spheres has been exaggerated by doubling from the interval @], tb [1,
2(1+p)]. Solid contours of the streamline denote counterclockwise circulation while the
showing clockwise circulation are dashed. It can be seen from Fig. 6(a) that-=attké
the meridional part of the basic flow consists of one large basic vortex in each hemispl
The large basic vortices, which were first introduced by Marcus and Tuckerman [19], rc
in opposite directions in such way that the flow at the equator is directed from the ir
sphere to the outer one. The dashed streamline located exactly at the equator is the o
boundary between the two large vortices. As these vortices are easily confused witl
Taylor—Gdrtler vortices which occur at high Reynolds number, we refer to it as the seconc
flow circulation in this paper. Figure 6(b) depicts the contours of constant azimuthal ang
velocity, u,/rsing, for the flow in Fig. 6(a). The azimuthal angular velocity decreases frc
the inner to the outer sphere. The contours of the constant azimuthal angular velocit
parallelto the spherical boundaries, so we found that even at B@0 the azimuthal angular
velocity of the basic flow is a good approximation to that of the Stokes flow (Eq. (3.5))

When the Reynolds number Re is increased to 900, the secondary flow circulations :
still qualitatively unchanged (comparing Fig. 6(c) with Fig 6(a)) while small wiggles
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i
i\

)‘\\

FIG. 6. (a), (c), (e), (g) contours of the meridional streamlines (solid lines, counterclockwise; dotted line
clockwise). (b), (d), (f), (h) contours of the angular velocity on meridional plart® for the axisymmetric spherical
Couette flow at different Reynolds number Re500, 900, 920, and 940, respectively. The circumferential distanc
between the tick marks on the outer spherg.i¥he tick marks on the inner sphere are spaced at intervalgld
radians. The gap width has been exaggerated to double from the interval @], tb [1, 2(1+ B)]. Notice that
these flows are equatorially reflection-symmetric.

contours of the azimuthal angular velocity appear near the equator (seen in Fig. 6(d)).
is because that the secondary flow begins to affect the distribution of the angular momen
At Re = 920 the basic flow is distorted slightly and the 0-vortex flow with pinches i
formed. The pinching phenomenon of the O-vortex flow is illustrated in Fig. 6(e). It
observed that there are two local maxima in the stream function in each hemisphere.
pinchis located about one gap width away from either side of the equator and is charactel
by a stagnation point. The small circulation in closed streamlines near the either side of
equator has the same sign as that of the secondary flow circulation. As this circulatio
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FIG. 6—Continued

not separated from the secondary flow circulation, it is usually not easily observed ir
experiment. Figure 6(f) shows the azimuthal angular velocity contours of the pinche
vortex flow in Fig. 6(e). It is noted that the wiggles at the equator have increased in amplit
(compared with Fig. 6(d)). The secondary flow has developed strongly enough to affec
distribution of angular momentum between the spheres. Such a pinching phenom
has been investigated numerically by Marcus and Tuckerman [19], Bar-Yesepf20],
Dumas and Leonaed [9], and Zikannov [10].

As the Reynolds number Re is increased further (such that for Rec the critical
Reynolds number for the firstinstability), the spherical Couette flow, like the circular Cous
flow in rotating cylinders, will lose its stability. That is, at ReRec the Taylor-type first
instability occurs in the spherical Couette flow, and this first instability induces a transit
from the basic flow into toroidal Taylor-@tler (TG) vortices which are formed in the
equatorial region. Figures 6(g) and (h) show our numerical solution of the 1-vortex fl
at Rec= 940 (R =1). It can be seen from the meridional streamlines of Fig. 6(g) that
each hemisphere there is one toroidal TG vortex near the equator with a diameter w
is approximately equal to the gap width. The toroidal TG vortices are separated fromn
secondary flow circulation by a nearly straight streamline that extends from the inner sp
to the outer sphere. This streamline is an outflows(0) boundary between the toroidal TG
vortex and the secondary flow circulation. Atthe equator there is an inflow@uboundary
between the two toroidal TG vortices. The circulation of the toroidal TG vortex has
opposite sign to that of the secondary flow. We found in our numerical simulation that
critical Reynolds number Ree 940 (R = 1) for onset of the toroidal TG vortices is close
to 900, the one obtained in the experiments (Nakabayashi [16], Nakabayashi and Tsu
[17]) (see Table 1). Figure 6(h) shows that the wiggles of the contours of the azimu
velocity are more pronounced than those of the 0-vortex flow with pinch in Fig. 6(f), an
means that there is much angular momentum transfer occurring in the 1-vortex flow thar
in the pinched 0-vortex flow. The distortions of the azimuthal velocity contours, which
opposite in sign to those in the 0-vortex flow with pinch, are due to the toroidal TG vortic
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1.

b

FIG. 7. Plots of the velocity vectors of the spiral TG vortex flow in t{te ¢) spherical cross section at
mid-gap radius viewed from (&) = n/2—2r/9, (b)¢p =7 —27/9, ()¢ = 37/2—27/9, (d)¢ = 2w — 27/9.
The Reynolds number for occurrence of these spiral TG vortices Res is 1100 in the numerical simulation. Cor
of the zero radial velocityu, = 0) on this section is also drawn with two types of solid lines. Thin solid lines
indicate the center positions of the two toroidal TG vortex cells. The thick ones, which are counted by every
thick lines from each side of the equator, correspond to the center lines of the spiral TG vortex.
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FIG. 7—Continued
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TABLE 1
Comparison between the Numerical Simulation and the Experimental Results

Toroidal TG vortex Spiral TG vortex
Dynamical Geometrical Dynamical Geometrical
characteristics characteristics characteristics characteristics

Experiment§®(1? R* = 1(Rec=900) Axisymmetric R =1.13 (Res=1017) Three pair of spirals

Steady Equal widths Move in rotating No-equatorial
to clearance direction symmetry
Present study R=1(Rec= 940 Axisymmetric R = 1.18 (Res=1110) Three pair of spirals
Steady Equal widths ~ Move in rotating No-equatorial
to clearance direction symmetry

Our numerical solutions of the 0-vortex flow, the 0-vortex flow with pinch and the 1-vorte
flow mentioned above are found to be in close similarity in qualitative features to the flo
in other numerical work (Marcus and Tuckerman [19]). A more detailed comparison of t
computed toroidal TG vortices with the ones observed in the experiments (Nakabay:
[16], Nakabayashi and Tsuchida [17]) shows a good agreement in quantitative features
Table 1).

4.2. Three-Dimensional Spiral TG Vortex Flow

Inthis subsection, we present the results on the numerical simulation of the so-called s
Taylor-Gortler (TG) vortex (Nakabayashi [16]). Dumas and Leonaed [9] have been sl
cessful in simulation of the three-dimensional spiral TG vortices for a narrow gapgase (
0.06). In this numerical simulation, we are concerned \gite 0.14, a moderate gap case.

As we raise the Reynolds number Re to a higher value, the 1-vortex flow becomes unst
due to the secondary instability, and its symmetry is broken. This secondary instabi
results in a transition from the 1-vortex flow to the supercritical spiral TG vortex flow. Th
three-dimensional spiral TG vortex flow at ReRes= 1110 (Res: the Reynolds number
for occurrence of the spiral TG vortex) is illustrated in the following Fig. 7 and Fig. &
First, Fig. 7 shows the plots of the velocity vectorg,(w) of the spiral TG vortex flow in
the @, ¢) spherical cross section at mid-gap radius viewed fromp@)r /2 — 27 /9, (b)
¢=m—21/9,(C)¢p=37/2—27/9, (d)¢ =27 — 27 /9. The flow on the section moves in
the same direction as that of the inner rotating sphere (counterclockwise). The contoL
the zero radial velocity (u= 0) in this section is also drawn with two types of solid lines,
which is the boundary between existing inflowy @ 0) and outflow (4 > 0). Thin solid
lines indicate the center positions of the two toroidal TG vortices. The thick ones, whi
are counted by every two thick lines from each side of the equator, correspond to the ce
lines of the spiral TG vortices. Figure 8 gives the bird’s-eye view of the radial velogity (U
in the same spherical cross section as that in Fig. 7. To compare it with the same con
line in the Fig. 7, the zero contour of the radial velocity £u0) is also projected onto the
(8, ¢) plane. It is observed in Figs. 7 and 8 that there is one toroidal TG vortex and thi
spiral TG vortices in each hemisphere. The three pairs of the spiral TG vortices are forr
on each side of the one pair of the toroidal TG vortices. The lines of the center positi
of the toroidal TG vortices(or say the axes of the TG toroidal vortices) are nearly para

to the equator while the center lines of the spiral TG vortices (or say the axes of the s
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FIG. 8. Bird's-eye view of the radial velocity in the same spherical cross section as that in Fig. 7, but show
Cartesian coordinates. For comparison with Fig. 7, the zero contour of the radial vélpeity) is also projected
onto the(d, ¢) plane. Arrows show the direction of the spiral TG vortices’s movement.

TG vortices) are tilted with respect to the azimuthal direction. Obviously, the spiral -
vortices are equatorially asymmetric and travel in the azimuthal direction (the same a
inner rotating sphere). The arrows in Fig. 8 show the direction of the spiral TG vortice
movement. Table 1 also displays the characteristics of the spiral TG vortices simulated
the numerical method and the ones of the experiments (Nakabayashi [16] and Nakaba
and Tsuchida [17]). Quantitatively, the numerical simulation on the spiral TG vortices gi
a good agreement with the experiments.

5. SUMMARY

A finite-difference method for solving three-dimensional, time-dependent incompre
ible Navier—Stokes equations in spherical polar coordinates is presented in detail. A
algorithm, which is second-order accurate in time and space, is considered, and decot
between the velocity and the pressure is achieved by this algorithm. A staggered grid sy
is used in the present study, so the treatment of singularities of the equations in spheric:
lar coordinates is avoided. The discrete velocity equations are solved with the approxil
factorization technique and standard TDMA method, while the discrete Poisson eque
is solved with the ADI technique and a refined TDMA method.
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Further, the numerical method is tested by computing the spherical Couette flow betw
two concentric spheres with the inner one rotating. We simulated the subcritical flows
vortex flow, 0-vortex flow with pinch) and the supercritical flows (TG vortex flow, spira
TG vortex flow). A comparison of the numerical solutions with available numerical resul
and experimental measurements was made. It is demonstrated that the initial-boun
numerical code is valid for solving three-dimensional, unsteady incompressible Navi
Stokes equations in spherical polar coordinates.
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